Using Prior Knowledge in an NNPDA to Learn Context-Free Languages

نویسندگان

  • Sreerupa Das
  • Guo-Zheng Sun
چکیده

Although considerable interest has been shown in language inference and automata induction using recurrent neural networks, success of these models has mostly been limited to regular languages. We have previously demonstrated that Neural Network Pushdown Automaton (NNPDA) model is capable of learning deterministic context-free languages (e.g., a n b n and parenthesis languages) from examples. However , the learning task is computationally intensive. In this paper we discuss some ways in which a priori knowledge about the task and data could be used for eecient learning. We also observe that such knowledge is often an experimental prerequisite for learning nontrivial languages (eg. a n b n cb m a m).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Prior Knowledge in a {NNPDA} to Learn Context-Free Languages

Although considerable interest has been shown in language inference and automata induction using recurrent neural networks, success of these models has mostly been limited to regular languages. We have previously demonstrated that Neural Network Pushdown Automaton (NNPDA) model is capable of learning deterministic context-free languages (e.g., anbn and parenthesis languages) from examples. Howe...

متن کامل

Learning Context-free Grammars: Capabilities and Limitations of a Recurrent Neural Network with an External Stack Memory

This work describes an approach for inferring De-terministic Context-free (DCF) Grammars in a Connectionist paradigm using a Recurrent Neu-ral Network Pushdown Automaton (NNPDA). The NNPDA consists of a recurrent neural network connected to an external stack memory through a common error function. We show that the NNPDA is able to learn the dynamics of an underlying push-down automaton from exa...

متن کامل

The Neural Network Pushdown Automaton: Model, Stack and Learning Simulations

In order for neural networks to learn complex languages or grammars, they must have sufficient computational power or resources to recognize or generate such languages. Though many approaches have been discussed, one obvious approach to enhancing the processing power of a recurrent neural network is to couple it with an external stack memory in effect creating a neural network pushdown automata...

متن کامل

Meaning to Learn: Bootstrapping Semantics to Infer Syntax

Context-free grammars cannot be identified in the limit from positive examples (Gold 1967), yet natural language grammars are more powerful than context-free grammars and humans learn them with remarkable ease from positive examples (Marcus 1993). Identifiability results for formal languages ignore a potentially powerful source of information available to learners of natural languages, namely, ...

متن کامل

The Influence of Data-Driven Exercises Through Using a Computer Program on Vocabulary Improvement in an EFL Context

The present study was conducted to evaluate data driven learning (DDL) combined with Computer Assisted Language Learning (CALL) as an approach to improving vocabulary knowledge of Iranian postgraduates majoring in teaching English, English literature and translation. The purpose was to help language learners get familiar with DDL as a student-centered method taking advantage of a computer progr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992